If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+8p-31=0
a = 1; b = 8; c = -31;
Δ = b2-4ac
Δ = 82-4·1·(-31)
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{47}}{2*1}=\frac{-8-2\sqrt{47}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{47}}{2*1}=\frac{-8+2\sqrt{47}}{2} $
| 5y2+3y–4=0 | | 6(5-3Y)=4(25=2y) | | 4x^2-33x+30=0 | | -6(-2+7n)=12+2n | | 5(r-4)1.06=45.05 | | 8x-3(2x-4=3(x-6) | | 72*c=18 | | 5x^2-20x+35=30 | | -4+5r=r+4 | | -5.1=x/5+7.4 | | (9x-11)+(13x-7)=7x | | 1+3w=14 | | A(n)=4+(n-1)(-2) | | -2-8(1+6n)=-250 | | -3x^2-24x+17=40 | | 2.5=-16t^2+2t | | 8-8a=17-5a | | −3x^2−24x+17=−40 | | 3+3+4×15=x | | 8x=(5x-1) | | -147=-8(4+5x)+5 | | 11.7v+9.9=27.7432+11.4v-2.324 | | y/8+1/4=3/2 | | (4x-15/2)+(x+3/10)=3 | | 9x(7^(x-5))+4=82 | | 108.5x=5.50 | | 5/6r=4.6 | | .2x+72=89.5 | | 1/2y-1/10=1/5y+1/2 | | 1-7x+x=1 | | 3x+5+x15=180 | | .2x+90=89.5 |